外,理论和计算结果可能缺乏一致性。”
“我们也是没有办法,才过来找你帮忙”
邱志超说的又介绍起来,也等于是给在场众人进行一个科普。
费米子哈伯德模型,物理学家约翰-哈伯德提出的模型,是描述高温超导材料的代表性物理模型之一。
费米子哈伯德模型描述的是晶格中电子运动规律的最简化模型,被认为是有希望解释高温超导机理这一困扰物理学界近四十年难题的核心物理模型。
一旦理解其物理机制,就能够规模化地设计、生产和应用新型的高温超导材料,并在电力传输、医学、超算等领域产生变革性影响。
显然,费米子哈伯德模型的研究难度非常高。
费米子哈伯德模型的求解一直面临巨大挑战,一是该模型在二维和三维下没有严格解析解,二是计算复杂度非常高,即使是经典超级计算机也无法进行有效的数值模拟。
举例来说,利用经典计算模拟300个电子的运动规律,需要的存储空间将达到2的300次方量级,超过已知宇宙中原子数目的总和。
所以科学界想出了一种简单粗暴的解决方式——量子计算!
量子计算机已经发展到了第二个阶段,也就是利用量子计算的特殊性,解决诸如费米子哈伯德模型这一类重要科学问题。
‘光晶格实现费米子单带超流’,就是以量子计算解决费米子哈伯德模型研究中的一环。
这个研究属于量子计算范畴,关联到费米子哈伯德模型,又关联到高温超导机制研究,确实是非常的重要。
张硕没有从事过高温超导的研究,也不清楚费米子哈伯德模型,但对于‘物理性暴力’破解计算问题的研究方式有些疑惑。
等邱志超解释完以后,他带着疑惑开口问道,“以量子计算的方法解决费米子哈伯德模型,有点像是用dns方法去解决ns方程数值模拟问题,我这么理解,对不对?”
邱志超和周刚对视一眼,一起点头,“是有点像。”
dns方法,就是以庞大的计算量来解决ns方程数值模拟问题。
量子计算研究费米子哈伯德模型,同样是依靠量子计算的超高性能,只不过因为量子计算技术还远谈不上成熟,解决单方向的学术科研问题,就需要做单方向的研究。
张硕继续问道,“你们为什么不试着用数学方法解决问题呢?”